And h with the carrot or the hat here, well, that carrot or hat tell us it must be an operator, and this is called the Hamiltonian operator. 而且带帽的H,好,这个帽告诉我们它肯定是一个算符,这个被称为哈密顿算符。
The Research of Transition from Classical Hamiltonian H to Quantum Mechanics Operator ■ 经典哈密顿函数H向量子力学算符■过渡的研究
An approximate wave function is operated on by the operators λ-H and ( H-λ)-1, where H is the Hamiltonian operator of the quantum system under consideration. 设H为量子体系的哈密顿算符,以算符(λ-H)和(H-λ)~(-1)作用于近似波函数k~(0)。
Under the framework of nonlinear quantum field theory, we show the total Hamiltonian operator H tot for the interaction between an electron field and a photon field, and study the contribution of the nonlinear term A 2 in the strong laser field. 在非相对论量子场论框架下,给出电子场和光子场相互作用时整个系统的哈密顿量Htot,研究在强光场中非线性项即A2项的作用。
In section 1, based on a Hamiltonian of the electron-LO phonon system the properties of the ground state energy and binding energy of the weak-coupling polaron in a parabolic quantum dot is studies for the first time by using a linear combination operator and a unitary transformation method. 在第一节中从电子-LO声子系的哈密顿出发首次采用线性组合算符和幺正变换方法,研究抛物量子点中弱耦合极化子的基态能量和结合能的性质。
From Maxwell equations for free space and by converting the amplitudes in Fourier expansion of the vector potential into operators according to quantisation correspondence, this paper obtains Hamiltonian operator, which quantises the electromagnetic field, and introduces the number state representation for the field. 本文从真空中麦克斯韦方程组出发,通过把矢势的Fourier展开式中的振幅按照量子化对应化为算符,得到了哈密顿算符,从而实现了电磁场的量子化,同时给出了电磁场的数态描述。
In this paper, the Parameter dependant formulation of the Bogoliubov transformation is used to diagonalize Hamiltonian of Heisenberg antiferromagnet two sublattice modle, and to derive the spin dependant unitary operator performing this transformation and the exact eigenstates. 利用参量相关的Bogoliubov变换公式对角化Heisenberg反铁磁双子晶格模型哈密顿,得到施行变换的自旋相关的幺正算符和精确本征态。
Besides, with the Hamiltonian of the interaction between the field and the atom with Kerr medium, the evolution operator and the reduced density operator of the field are derived, then the other basic work model is obtained. 其次,从光场与原子附加克尔介质相互作用哈密顿量出发,得出非线性J-C模型系统的一般时间演化算符和光场的约化密度算符,得出了本文的基本工作模型之二。
Second chapter is theoretical basis, and describes the main theoretical con-cepts and formula derivation process, introduce a second non-harmonic oscil-lator model, this model gives the total Hamiltonian, the system time evolution operator expression, given the expression of entropy. 3. 第二章为理论基础,介绍了主要的理论概念及公式推导过程,介绍了二次非谐振子模型,利用此模型给出体系总哈密顿量,得到体系的时间演化算子表达式,给出熵的表达式。
On the basis of the first-principles calculated results, we can construct the effective Hamiltonian and dipole moment operator, and then extract the crystal-field parameters and the intensity parameters. 基于第一性原理计算的结果,我们可以构造所研究体系的有效哈密顿量算符以及跃迁偶极矩算符,从而计算稀土离子晶体场参数和跃迁强度参数。